1H-NMR metabolite profiles of different strains of Plasmodium falciparum
نویسندگان
چکیده
Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite.
منابع مشابه
Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by 1HNMR in vitro
Objective(s): Malaria is an important parasitic disease with high morbidity and mortality in tropical areas. Resistance to most antimalarial drugs has encouraged the development of new drugs including natural products. Venom is a complex mixture of active pharmaceutical ingredients. The purpose of this study was to investigate the antimalarial activity of purified frac...
متن کامل1H, 13C, and 15N resonance assignments of FK506-binding domain of Plasmodium falciparum FKBP35.
The immunosuppressant FK506 binds Plasmodium falciparum FK-506 binding protein 35 (PfFKBP35) and shows anti-malarial activity. To understand molecular mechanism of the drug on the parasite, we have done NMR studies. Here, we report the assignment of FK506-binding domain of PfFKBP35.
متن کاملMetabolomics-Based Study of Logarithmic and Stationary Phases of Promastigotes in Leishmania major by 1H NMR Spectroscopy
Background: Cutaneous leishmaniasis is one of the most important parasitic diseases in humans. In this disease, one of the responsible organisms is Leishmania major, which is transmitted by sandfly vector. There are specific differences in biochemical profiles and metabolite pathways in logarithmic and stationary phases of Leishmania parasites. In the present study, 1H NMR spectroscopy was used...
متن کاملSynthesis and study of effects of new 4-chloro – amodiaquine analogues against two resistant and sensitive forms to chloroquine Plasmodium Falciparum, in vitro
Background: Resistance to chloroquine (CQ) in Plasmodium falciparum malaria has become a major health concern of the developing countries.This resistance has prompted a re-examination of the pharmacology of alternative antimalarials that may be effective against resistant strains. Amodiaquine (AQ) is a 4-aminoquinoline antimalarial which is effective against many chloroquine-resistant strains o...
متن کاملClinical Pharmacology of the Antimalarial Quinine in Children
Quinine is the best studied drug for treating severe malaria in very young children. Quinine may be administered in pregnancy and, at therapeutic doses, malformations have not been reported. Some strains of quinine from Southeast Asia and South America have become resistant. Quinine is the treatment of choice for the drug-resistant severe Plasmodium falciparum. The antimalarial mechanism of qui...
متن کامل